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BACKGROUND & MOTIVATION



Background

• Elevated levels of CO2 have been found in 
homes built on/adjacent to reclaimed and 
abandoned mine land in recent years

– CO2 > 25%

– O2 < 10% 

• Stable carbon isotope analysis have shown 
that AMD-carbonate reactions are responsible 
in some instances
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Motivation Cont’d

• We are motivated by a desire to develop 
predictive tools/methods to assess 
reclaimed mine land prior to reclaimed mine land prior to 
development

– Apply chamber accumulation trace gas 
measurement techniques to collect discrete soil 
CO2 emission rates (fluxes) on reclaimed mine 
land

– Apply geostatistics to model spatial and/or 
spatiotemporal variation



OBJECTIVE



Objective

• The objective of this presentation 
is to use a case study to illustrate 
the benefits, and future research the benefits, and future research 
directions, of CO2 flux monitoring 
and modeling using geostatistics.



METHODS & MATERIALS



Chamber Accumulation Soil 
Sampling

• LI-8100 automated CO2

flux system (LICOR 
Biosciences, Lincoln, Biosciences, Lincoln, 
Nebraska)

• USDA GRACEnet protocl

• 8” Collars

• Samples taken on June 4, 
5 & 10



Study Site

• Reclaimed Mine in Somerset 
County, PA

– Spoil > 70 ft thick– Spoil > 70 ft thick

– 20 tons/acre of agg. Lime (CaCO3) 
addition to the pit floor was required 
prior to backfilling 

• Stray CO2 in the residence was 
investigated by the PA-DEP in 2003



Study Site

• Continuous 
monitoring in the 
basement recorded:

– >25% CO2
– 13% O2 

• Isotopic analyses 
yielded a δ13C of:

– -4.07‰ in the 
basement 

– -4.18‰ in a 
monitoring well



Geostatistics

• Software: GS+ Version 9

• We used variogram analysis to model 
the autocorrelation of maximum flux in the autocorrelation of maximum flux in 
2-D

• Variogram models considered were :

– Linear

– Exponential

– Spherical

– Gaussian



Geostats Cont’d

• The maximum flux was estimated 
using ordinary and indicator 
krigingkriging

– Isotropic search radius 385 ft.

–Minimum samples = 3

–Maximum samples = 15

– Indicator kriging cut-off = 5.5 
µmol/m2/sec



RESULTS & DISCUSSIONS



Flux Results
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Variogram Analysis
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Kriging Results



Cross-Validation
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Cross-Validation Cont’d

90%

110%

130%

150%

-50%

-30%

-10%

10%

30%

50%

70%

90%

H

3

H

1

E

7

E

6

E

5

E

4

E

3

E

2

E

0

E

1

D

9

D

7

D

6

D

5

D

4

D

3

D

2

D

1

C

8

C

7

C

6

C

5

C

4

C

2

C

1

B

8

B

7

B

4

B

3

B

2

A

8

A

7

A

2

H

4

H

2

E

8

D

8

D

0

C

0

C

3

B

6

B

5

B

1

P
e
rc
e
n
t 
E
rr
o
r 
(E
-A
)

Samples



Indicator Kriging 
Results



CONCLUSIONS & FUTURE 
WORK



Conclusions

• The maximum CO2 fluxes of replicate 
samples at the site seem to be 
spatially correlatedspatially correlated

• The grid spacing of 250 ft is too high 
to accurately quantify the spatial 
variability

• There is significant temporal 
variability of the fluxes as well



Conclusions Cont’d

• Geostatistical methods show 
promise in modeling the spatial 
and spatiotemporal variabilityand spatiotemporal variability



Limitations/Future Work

• Validation of geostatistical estimates needs to 
be improved (mean error = 20%)

– The optimal grid spacing needs to be 
establishedestablished

– More covariance/variogram functions need to 
be explored and new ones developed if 
necessary

• Spatiotemporal data collection and modeling 
may be necessary to model the random field 
appropriately.
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COMMENTS & QUESTIONS



Isotope Results

Sample ID δ13C CO2

Flux 
(µmol/m2/sec) CO2 (ppm)

B1 -24.1 7.45 1,299 B1 -24.1 7.45 1,299 

B5 -20.3 4.39 792 

B6 -19.6 3.36 688 

C0 -19.0 4.14 718 

C3 -20.3 5.43 920 

D0 -16.4 2.12 593 

D8 -19.2 4.20 752 

E8 -19.4 4.32 749 

H2 -21.2 8.40 930 

H4 -22.1 7.30 960 


