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“I believe in natural gas as a clean, 

cheap alternative to fossil fuels.”  

“Natural gas is cheap, abundant 

and clean compared to fossil fuels.”

- Nancy Pelosi on Meet the Press, August 2009



Correlating natural gases in 

groundwater, shows, and seeps to 

subsurface accumulations or to 

possible source rocks can be difficult:

• A range of processes affect gas composition

• A limited number of variables were used to 

characterize gas in the past



Stable isotopes of carbon and 

hydrogen:

• C1 – C5

• Provide maximum 

possible information 

on:on:

– Origin

– Mixing

– alteration



Goals

• Distinguish gas sources

– Thermogenic

– Biogenic (microbial)

– Abiotic CO2 reduction, Fischer - Tropsch reactions

• Identify alteration processes• Identify alteration processes

– Mixing

– Raleigh fractionation

• Consistency with theoretical kinetic models

• Use all possible measurements



Outline

• Basics

– Gas generation processes

– Isotope fractionation in hydrocarbons (HC)

• Standard displays of HC isotope data

– Bernard plot

– Schoell plot– Schoell plot

– Chung’s natural gas plot (NGP)

• Examples of source, mixing, alteration

– North Slope, Appalachians, New England

• Conclusion:  13C and 2H on all HC gases yield more 
information, and therefore stronger interpretations



Nomenclature

δ = 
Rx - Rstd

Rstd

( ) x 1000

Where:

Rx = 13C/12C or 2H/1H (also D/H) in sample

and 

Rstd = ratio in standard: 13C/12C, PDB; 2H/1H, VSMOW

δ units:  parts per thousand, 

per mil or ‰

Rstd = ratio in standard: C/ C, PDB; H/ H, VSMOW

αA-B = 
RA 

RB

αA-B = K1/n

Where K is the equilibrium constant for the exchange 

reaction for n atoms exchanged



Organic Reaction Facies



THE MAJOR SOURCES OF 

HYDROCARBON NATURAL GASES:

• Methanogenic 

bacteria

• All types of kerogen

• Coal• Coal

• Oil in source and 

reservoir rocks



Sources of natural gas:

• The major nonhydrocarbon gases - CO2, H2S, 

and N2 – are formed by both organic and 

inorganic processes. Associated He and Ar 

originate in both the crust and mantle.

• All known commercial hydrocarbon gas 

accumulations are biogenic in origin:

– Decomposition of organic matter in the earth’s crust

– No known commercial abiogenic methane 

accumulations exist based on stable isotope 

measurements. 



-Tissot and Welte, 1984)



-Howell and 

others, 1993



Generation of gases from organic 

matter with increasing temperature: 
• Diagenesis: 

– microbial methane  generation 
up to ~ 50°C

– ~ 20% methane in 
conventional reservoirs

– Important in some shale 
reservoirs in the Michigan and 
Illinois basinsIllinois basins

• Primary cracking: 
– thermal cracking of kerogen 

and coal to generate methane

– ~25% to 40% of gases

• Secondary cracking:
– thermal cracking of oil

– ~40% to 55% of gases

• Metagenesis?

- Hunt, 1996



Microbial Gas Generation

• Biogenic vs. microbial or 
bacterial gas

• C1/(C2 + C3) >> 100

• δ13C1 < 60 permil

• δDC1 < 150 permil

• Covariance of δD values of • Covariance of δD values of 
formation water and CH4

• Alkalinity of associated formation 
water (> 10 meq/kg)

• Positive δ13C of DIC (> 10 
permil)

• Microbial fermentation

• CO2 reduction



Microbial Gas Generation





CHO Reactions in Crustal Rocks
Cracking of sedimentary OM:

[(CxHy)-CH3 ]Kerogen ---> CH4 + CxH(y-1)

[(CxHy)-C2H5 ]Kerogen ---> C2H6 + CxH(y-1)

Anthracite grade:

C20H4 ---> 19C + CH4

C20H4 + 2H2O ---> 17C + 2CH4 + CO2C20H4 + 2H2O ---> 17C + 2CH4 + CO2

Graphite buffered, metamorphic fluids:

2C + 2H2O = CH4 + CO2

Fischer-Tropsch Type:

CO2 + 4H2 = CH4 + 2H2O

2CO2 + 7H2 = C2H6 + 4H2O

nCO2 + (3n+1)H2 = CnH2n+2 + 2nH2O



Schoell (Whiticar) diagram

From Whiticar, 1999



Bernard diagram



δδδδ13C Methane vs Gas Dryness
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Bernard plot
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Methane Isotopic Composition
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Lower Paleozoic gases compared to sources
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Chung, et al., 1988, cracking model and the natural 

gas plot (NGP)

• Consider cracking of gases from kerogen with homogeneous isotopic 
composition, δ13Cp

• All gases form by same reaction mechanism

• Parent molecules (kerogen or oil) are structurally similar

• No condensation reactions form gases

K - C Isotopic composition of CKR - C

KR - C - C 

KR - C - C - C 

KR - C - C - C - C

KR - C - C - C - C - C

KR - C - C - C - C - C - C

Cm

Cp

Cn

Isotopic composition of Cn

δ13Cn = [δ13Cm + (n-1) δ13Cp]/n

Rearranging:

δCn = -1/n(δCp - δCm) + δCp

Where:

δCp is δ13C of parent

δCm is δ13C of link C

δCn is δ13C of gas molecule



Natural Gas Plot (Chung, et al.)

ε -  -15‰



Ab initio calculations, Y. Tang, et al., 2000, GCA, assuming non-cleaved C is 0 per mil
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Greater Prudhoe Bay area fields

-40

-35

-30

-25

13Cn

Prudhoe Bay Area Gases

-40

-35

-30

-25

W. Sak #17 (Kup. C)

Prudhoe #15-10

Prudhoe #16-10

W. End Test #1

δδδδ13C,

Cn

δ

North Slope, Alaska:  Selective isotope reversals due to microbial oxidation

-60

-55

-50

-45

0 0.2 0.4 0.6 0.8 1

1/Cn

Cn

West Sak

Tarn

Kalubik

Kuparuk River

Pt. MacIntyre

Alpine

Prudhoe Bay G.C.

Prudhoe Lisburne

-55

-50

-45

0 0.2 0.4 0.6 0.8 1
1/Cn

Sag Delta #8

Sag Delta #10

Mukluk DST4

Prudhoe, Eileen

Prudhoe, Main

Prudhoe, Main

Liberty Unit

methane

ethane
propane

n-butane

n-pentane

δ



Reservoir intervals and 
distribution of gas reservoirs



Natural gas plot
samples from basin-center LSRA



Natural Gas Plot 

Ordovician Reservoirs, Trenton-Black River Fm., NY, PA



Natural Gas Plot 

Abiogenic, Kidd Creek gases.
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δ13C organic matter range:

-34 to -24 ‰



-25

Ord. NAG NY

-37

-32

δδδδ13C 

ethane

Sil. NAG

Ord. NAG

Sil. OAG

Ord. OAG

Mixing between OAG and Sil. NAG

Raleigh fractionation in Ord. NAG

-50

-45

-40

-35

-30

-1.5 -1 -0.5 0 0.5 1

ln mol % ethane

13C 

ä 

Ord. NAG PA

alpha = 1.015

alpha =1.021

40% remaining

30% remaining

-42

0 0.5 1 1.5 2 2.5 3

1/mol % ethane

δδδδ13C
ethane



-35

-30

-25

δδδδ 13C 

ethan Sil. NAG

Raleigh fractionation

Mixing

δδδδ13C

ethane

-50

-45

-40

0.0 2.0 4.0 6.0 8.0 10.0 12.0

mol % ethane

ethan Sil. NAG

Ord. NAG

Sil. OAG

Ord. OAG

-15 per mil

-22 per mil

Mixing

Possible end-member

Figure 10



-140

-120

-100

δδδδ2H Cn

York

York

York

York

York

York

C3

-200

-180

-160

-45 -40 -35 -30 -25 -20

δδδδ13Cn

Drumm

Gillis

Lant 

Curren

Hakes

Series12

Series13

Series14

C1

C2

Figure 6



-120

-100

-80

-60

-40

-20

δδδδ D

methan

Lee Cty, VA

Swan Creek

Rome Trough, KY

Silurian, OH, PA

Kukersite

L&B, Cambrian, OH

TBR

Possible range of δ D 
for formation water

Magnitude of
fractionation at

about 200 to 250 oC

Possible H/D exchange between CH4 and H2O

-220

-200

-180

-160

-140

-120

-60 -55 -50 -45 -40 -35 -30 -25 -20

δδδδ 13C methane



δ δ δ δ 13C vs δ δ δ δ D for C1 to C4 hydrocarbons



Low thermal maturity gases

• Are there thermogenic gases with δ13C methane 
< <-55 ‰ ?

• What is the impact of microbial oxidation?

• Can consortia of methanogens and 
methanotrophs produce gases with  δ13C methanotrophs produce gases with  δ13C 
methane > -50 ‰ ?



Antrim Gases, Martini, et al., 2003
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So, what does it mean?

• Carbon isotopic reversals and increasing 13C enrichment with depth 

imply destruction of HC leaving “heavy” residual components.

• H/D in methane from deepest samples suggests exchange with 
formation water

� δ 13C in methane and ethane (and propane) in deepest samples 
suggests isotopic exchange

� δ 13C in methane and CO2 in deepest samples suggests isotopic 

exchangeexchange

• Apparent H/D exchange in CH4-H2O and 12C/13C exchange in 
CH4-CO2 is consistent with fractionations at T = 200 to 250 oC

• THE LEAP:  Isotopic exchange is most efficient when molecular 
components undergo chemical reactions, therefore I suggest 
that all the gas components are linked through redox reactions, 
probably involving Fe2+/Fe3+, for example:

– Combine  CO2 + 4H2 = CH4 + 2H2O with

2Fe3O4 + H2O = 3Fe2O3 + H2  to get

8Fe3O4 + 2H2O + CO2 = 12Fe2O3 + CH4



OK, so maybe we are wrong and this has 
nothing to do with redox reactions

• We would welcome suggestions of other 

mechanisms to generate the isotopic variations 

we see.



The EndThe End


