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“| believe Iin natural gas as a clean,
cheap alternative to fossil fuels.”

“Natural gas is cheap, abundant
and clean compared to fossil fuels.”

- Nancy Pelosi on Meet the Press, August 2009




Correlating natural gases in
groundwater, shows, and seeps to
subsurface accumulations or to
possible source rocks can be difficult:

* A range of processes affect gas composition

* A limited number of variables were used to
characterize gas in the past




Stable isotopes of carbon and
hydrogen:

« C1-0C5

* Provide maximum
possible information
on:
— Origin
— Mixing
— alteration




Goals

Distinguish gas sources

— Thermogenic

— Biogenic (microbial)

— Abiotic CO, reduction, Fischer - Tropsch reactions
Identify alteration processes

— Mixing

— Raleigh fractionation

Consistency with theoretical kinetic models

Use all possible measurements




QOutline

Basics

— (Gas generation processes

— Isotope fractionation in hydrocarbons (HC)
Standard displays of HC isotope data

— Bernard plot

— Schoell plot

— Chung’s natural gas plot (NGP)
Examples of source, mixing, alteration

— North Slope, Appalachians, New England

Conclusion: 13C and ?H on all HC gases yield more
information, and therefore stronger interpretations




Nomenclature

std ) % 1000 S units: parts per thousand,
std per mil or %o

Where:

R, = 13C/12C or 2H/'H (also D/H) in sample
and

Ry = ratio in standard: '3C/'2C, PDB; 2H/'H, VSMOW

R

Olpp = R

(XA_B — K1/n

Where K is the equilibrium constant for the exchange
reaction for n atoms exchanged




Organic Reaction Facies
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THE MAJOR SOURCES OF
HYDROCARBON NATURAL GASES:

Methanogenic
bacteria

Coal

Oil in source and
reservolir rocks




Sources of natural gas:

« The major nonhydrocarbon gases - CO,, H,S,
and N, — are formed by both organic and
Inorganic processes. Associated He and Ar
originate in both the crust and mantle.

 All known commercial hydrocarbon gas
accumulations are biogenic in origin:
— Decomposition of organic matter in the earth’s crust

— No known commercial abiogenic methane
accumulations exist based on stable isotope
measurements.
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Generation of gases from organic
matter with increasing temperature:

® Diage neSiS . relative amount of petroleum formed
— microbial methane generation
up to ~50°C
— ~20% methane in
conventional reservoirs

— Important in some shale
reservoirs in the Michigan and
lllinois basins

« Primary cracking:

— thermal cracking of kerogen

and coal to generate methane

— ~25% to 40% of gases
« Secondary cracking:

— thermal cracking of oill
— ~40% to 55% of gases

« Metagenesis?

depth below surface/m

:

- Hunt, 1996




Microbial Gas Generation

Biogenic vs. microbial or
bacterial gas

C/(C,+C5) >> 100
013C, < 60 permil
oDC, < 150 permil

Covariance of 0D values of
formation water and CH,4

Alkalinity of associated formation
water (> 10 meq/kg)

Positive 613C of DIC (> 10
permil)
Microbial fermentation

CO, reduction




Microbial Gas Generation

acetate fermentation : CH3;COOH — CHy + CO»

(reaction 1) m%ﬁﬂ'ﬂﬁl' £ Westem Margin

R — - - & Romthern Marprin
COs reduction: CO» +4H; — CHy + 2H0 B Cetral Basi
_ “entral Basin
(reaction 2)

813Cqyy, (%0 PDB)




Schematic of Oil and Gas Generation:
why is there more gas at higher thermal maturity?

Biocdegradation




CHO Reactions in Crustal Rocks

Cracking of sedimentary OM:
[(CxHy)'CHS ]Kerogen T2 CI_|4 + CXH()H)

[(CxHy)'CZHS ]Kerogen > C2H6 T CXH(Y'U

Anthracite grade:
Con4 -—=> 19C + CH4
Con4 + 2H20 -——=> 17C + ZCH4 + C02

Graphite buffered, metamorphic fluids:
2C + 2H,0 = CH, + CO,

Fischer-Tropsch Type:
CO, + 4H, = CH, + 2H,0O
2C0, + 7H, = G,H; + 4H,0
nCO, + (3n+1)H, = C H,,., + 2nH,0




Schoell (Whiticar) diagram
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Bernard diagram

Molecular and Stable Carbon Isotope
Characterization of Natural Gases
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5'3C Methane vs Gas Dryness
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Bernard plot
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Methane Isotopic Composition
3 °C
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Lower Paleozoic gases compared to sources
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Chung, et al., 1988, cracking model and the natural
gas plot (NGP)

Consider cracking of gases from kerogen with homogeneous isotopic
composition, 6'°C,,

All gases form by same reaction mechanism
Parent molecules (kerogen or oil) are structurally similar
No condensation reactions form gases

Isotopic composition of C,

6'3C,, = [8'3C,, + (n-1) 8'3C_J/n
Rearranging:

0GC, = -1/n(6C,, - 6C,)) + 8C

Where:

6C,, is 6'°C of parent

0C,, is 8'3C of link C

0C,, is 8'3C of gas molecule

Y




Natural Gas Plot (Chung, et al.)

Theoretical kinetic isotope effects during cracking of gases from kerogen:

-25
kerogen
A References:
-30 -
Chung, H. M, et al.,
$13C E - -15%. 1988, Chem. Geol.
n
Rooney, M. A_, etal,
-35 - 1995, Chem. Geaol.
Support from ab
initio calculations:
-40 + Tang, et al., 2000,
Geochem. Cosmao. Acta
-45 " M " : " M " : " M " : " M " : " M "
0 027 Y 04 T 068 0.8 1.0

n-Ca Ca Co
n-butane propane ethane 1/Cy, methane




Ab initio calculations, Y. Tang, et al., 2000, GCA, assuming non-cleaved C is 0 per mil

Hexane precursor
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North Slope, Alaska: Selective isotope reversals due to microbial oxidation

Prudhoe Bay Area Gases Greater Prudhoe Bay area fields
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Natural gas plot
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Natural Gas Plot
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Natural Gas Plot

Abiogenic, Kidd Creek gases.
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I Gases generated from two types
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Mixing between OAG and Sil.
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Possible H/D exchange between CH, and H,O
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0 13C vs & D for C, to C, hydrocarbons
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Low thermal maturity gases

 Are there thermogenic gases with 6'3C methane
< <-55 %0 ?

« What is the impact of microbial oxidation?

« Can consortia of methanogens and

methanotrophs produce gases with 6'3C
methane > -50 %o ?




If the CH, is microbial, what is the source of ethane and propane ?

Antrim Gases, Martini, et al., 2003




Low maturity (microbial C,?) shallow gases, W. Canada, Rowe and Muehlenbachs, 1999
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So, what does it mean?

Carbon isotopic reversals and increasing '3C enrichment with depth
imply destruction of HC leaving “heavy” residual components.

H/D in methane from deepest samples suggests exchange with
formation water

0 '3C in methane and ethane (and propane) in deepest samples
suggests isotopic exchange

0 13C in methane and CO, in deepest samples suggests isotopic
exchange

Apparent H/D exchange in CH,-H,O and '2C/13C exchange in
CH,-CQO, is consistent with fractionations at T = 200 to 250 °C

THE LEAP: Isotopic exchange is most efficient when molecular
components undergo chemical reactions, therefore | suggest
that all the gas components are linked through redox reactions,
probably involving Fe?+/Fe3+, for example:

— Combine CO, + 4H, = CH, + 2H,0 with
2Fe;0, + H,O = 3Fe,O; + H, to get
8F€304+ 2H20 + C02 = 12F€203 + CH4




OK, so maybe we are wrong and this has
nothing to do with redox reactions

« We would welcome suggestions of other
mechanisms to generate the isotopic variations
we see.







