
by Lisa A. Senior and Daniel J. Goode

Water-Resources Investigations Report 99-4228
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Purpose and scope</td>
<td>3</td>
</tr>
<tr>
<td>Previous work</td>
<td>3</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>4</td>
</tr>
<tr>
<td>Geologic setting</td>
<td>4</td>
</tr>
<tr>
<td>Lithology</td>
<td>4</td>
</tr>
<tr>
<td>Structure</td>
<td>5</td>
</tr>
<tr>
<td>Fractures</td>
<td>8</td>
</tr>
<tr>
<td>Ground-water system</td>
<td>10</td>
</tr>
<tr>
<td>Recharge</td>
<td>11</td>
</tr>
<tr>
<td>Water-bearing zones</td>
<td>11</td>
</tr>
<tr>
<td>Water levels</td>
<td>17</td>
</tr>
<tr>
<td>Ground-water flow</td>
<td>25</td>
</tr>
<tr>
<td>Ground-water/surface-water relations</td>
<td>30</td>
</tr>
<tr>
<td>Ground-water quality</td>
<td>33</td>
</tr>
<tr>
<td>Estimation of aquifer hydraulic properties</td>
<td>35</td>
</tr>
<tr>
<td>Aquifer tests</td>
<td>35</td>
</tr>
<tr>
<td>Single-well, interval-isolation tests</td>
<td>35</td>
</tr>
<tr>
<td>Well Mg-80</td>
<td>36</td>
</tr>
<tr>
<td>Well Mg-1443</td>
<td>40</td>
</tr>
<tr>
<td>Well Mg-1444</td>
<td>44</td>
</tr>
<tr>
<td>Wells Mg-624 and Mg-1639</td>
<td>50</td>
</tr>
<tr>
<td>Chemical and physical properties of water</td>
<td>51</td>
</tr>
<tr>
<td>Multiple-well tests</td>
<td>53</td>
</tr>
<tr>
<td>Method of aquifer-test analysis</td>
<td>55</td>
</tr>
<tr>
<td>Rogers Mechanical site</td>
<td>56</td>
</tr>
<tr>
<td>Keystone Hydraulics site</td>
<td>59</td>
</tr>
<tr>
<td>John Evans site</td>
<td>64</td>
</tr>
<tr>
<td>J.W. Rex site</td>
<td>68</td>
</tr>
<tr>
<td>Chemical measurements during aquifer tests</td>
<td>68</td>
</tr>
<tr>
<td>Numerical simulation of regional ground-water flow</td>
<td>68</td>
</tr>
<tr>
<td>Model and model assumptions</td>
<td>68</td>
</tr>
<tr>
<td>Calibration of numerical model</td>
<td>72</td>
</tr>
<tr>
<td>Calibration errors</td>
<td>75</td>
</tr>
<tr>
<td>Estimated large-scale hydraulic conductivity and recharge</td>
<td>77</td>
</tr>
<tr>
<td>Effect of pumping on ground-water flow</td>
<td>79</td>
</tr>
<tr>
<td>Local ground-water flow</td>
<td>79</td>
</tr>
<tr>
<td>Regional ground-water flow under different pumping conditions</td>
<td>79</td>
</tr>
<tr>
<td>No pumping</td>
<td>80</td>
</tr>
<tr>
<td>1994 conditions</td>
<td>81</td>
</tr>
</tbody>
</table>
CONTENTS—Continued

Effect of pumping on ground-water flow—Continued

1997 conditions ... 83
Relation between simulated ground-water flow directions and ground-water contamination 84
Summary and conclusions .. 86
References cited ... 88

ILLUSTRATIONS

PLATE
[in pocket]

Plate 1. Location of selected wells in the area of Lansdale, Montgomery County, Pennsylvania

FIGURES

Figure 1-2. Maps showing:
1. Location of North Penn Area 6 site, Lansdale, Pa. ... 2
2. Bedrock geology in area of Lansdale .. 5
3. Lithology of well cuttings and geophysical logs for well Mg-1604 in Lansdale 6
4. Natural-gamma-log correlations for wells Mg-164, Mg-163, Mg-80, Mg-1620, Mg-1619,
Mg-67, Mg-1615, and Mg-1440 in Lansdale .. 7
5-6. Stereonets showing:
5. Equal-area, lower-hemisphere plots of poles to fracture planes determined from
 outcrop measurements at (A) four sites in and near Lansdale and at
 (B) one stream site in Whites Road Park, Lansdale ... 8
6. Equal-area, lower-hemisphere contours of poles to fracture planes measured by
 acoustic televiewer in wells in Lansdale for (A) 698 fractures above 400 feet,
 and (B) 181 fractures below 400 feet below land surface 9
7. Sketch of conceptual ground-water flow system in a fractured sedimentary-rock aquifer
 with dipping beds ... 10
8-10. Geophysical logs of:
8. Well Mg-164 in Lansdale ... 12
9. Well Mg-68 in Lansdale ... 13
10. Well Mg-69 in Lansdale ... 14
11. Borehole television image of (A) vertical fracture, and (B) horizontal fracture in well
 Mg-1444 in Lansdale ... 16
12. Equal-area, lower-hemisphere plot of poles to fracture planes measured by acoustic
 televiewer in well Mg-67 in Lansdale ... 17
13-18. Graphs showing:
13. Long-term (annual or greater) water levels showing seasonal recharge in wells
 Mg-82, Mg-67, Mg-704, and Mg-623 in Lansdale .. 19
14. Long-term (annual or greater) water levels showing seasonal recharge in wells
 Mg-81, Mg-68, and Mg-618 in Lansdale ... 19
15. Water levels in well Mg-1441 showing response to nearby pumping in Lansdale,
 February-March 1996 ... 20
16. Short-term water-level response to precipitation in wells Mg-143, Mg-82, and
 Mg-67 in Lansdale, January 1996 ... 21
ILLUSTRATIONS

Figure 13-18. Graphs showing—Continued

17. Water levels in well Mg-704 showing water-level response to earth tides in Lansdale, April 1996 21
18. Water levels in well Mg-1607 showing response to barometric pressure Lansdale, November 1997 ... 22

19-21. Maps showing:

19. Measured water levels and contoured water-level surface in and near Lansdale, August 22-23, 1996 23
20. Measured water levels and contoured water-level surface in and near Lansdale, January 13-14, 1998 .. 24
21. Directions of vertical flow measured in wells logged in and near Lansdale 28

22. Sketch showing conceptual ground-water flow system with wells open to different intervals in a fractured, sedimentary-rock aquifer with dipping beds 29
23. Map showing location of streamflow-measurement sites in and near Lansdale 31
24. Caliper log showing depth of packers for aquifer-interval-isolation tests and direction of nonpumping flow in well Mg-80 in Lansdale 37

25-26. Graphs showing drawdown as a function of time in aquifer-interval-isolation tests of:

25. Zone A in well Mg-80 in Lansdale, March 26, 1997 38
26. Zone B in well Mg-80 in Lansdale, March 27, 1997 38

27. Caliper log showing depth of packers for aquifer-interval-isolation tests and direction of nonpumping flow in well Mg-1443 in Lansdale .. 40

28-31. Graphs showing drawdown as a function of time in aquifer-interval-isolation tests of:

28. Zone A of borehole Mg-1443 in Lansdale, April 11, 1997 42
29. Zone B of borehole Mg-1443 in Lansdale, April 11, 1997 42
30. Zone C of borehole Mg-1443 in Lansdale, April 10, 1997 43
31. Zone D of borehole Mg-1443 in Lansdale, April 9, 1997 43

32. Caliper log showing depth of packers for aquifer-interval-isolation tests and direction of nonpumping flow in well Mg-1444 in Lansdale .. 45

33-37. Graphs showing drawdown as a function of time in aquifer-interval-isolation tests of:

33. Zone A of borehole Mg-1444 in Lansdale, April 7, 1997 46
34. Zone B of borehole Mg-1444 in Lansdale, April 4, 1997 46
35. Zone C of borehole Mg-1444 in Lansdale, April 4, 1997 47
36. Zone D of borehole Mg-1444 in Lansdale, April 3, 1997 48
37. Zone E of borehole Mg-1444 in Lansdale, April 3, 1997 48

38. Sketch showing well locations and drawdown at end of pumping well Mg-1600 at the Rogers Mechanical site in Lansdale, November 13, 1997 57

39. Cross-section showing open intervals of wells, static water level, and drawdown at end of pumping at the Rogers Mechanical site in Lansdale, November 13, 1997 57

40-41. Graphs showing:

40. Measured water levels at the Rogers Mechanical site in Lansdale, November 13-14, 1997 ... 58
41. Measured and simulated drawdown in wells Mg-1600 and Mg-1602 at the Rogers Mechanical site in Lansdale, November 13, 1997 58
ILLUSTRATIONS—Continued

Figure 42. Sketch showing well locations and drawdown at end of pumping well Mg-1610 at the Keystone Hydraulics site in Lansdale, November 18, 1997. 60

43. Cross-section of open intervals of wells, static depth to water, and drawdown at end of pumping at the Keystone Hydraulics site in Lansdale, November 18, 1997. 61

44-46. Graphs showing:

44. Measured water levels at the Keystone Hydraulics site in Lansdale, November 17-19, 1997. 62

45. Measured and simulated drawdown, using anisotropic model of Papadopulos, in wells Mg-67, Mg-80, Mg-163, and Mg-1620 at the Keystone Hydraulics site in Lansdale, November 18, 1997. 63

46. Measured and simulated drawdown, using isotropic model of Theis (1935), in wells Mg-67, Mg-80, Mg-163, and Mg-1620 at the Keystone Hydraulics site in Lansdale, November 18, 1997. 63

47. Sketch showing well locations and drawdown at end of pumping well Mg-1609 at the John Evans site in Lansdale, November 21, 1997. 64

48-49. Cross-sections of:

48. Open intervals of wells, static depth to water, and drawdown at end of pumping at the John Evans site in Lansdale, November 21, 1997. 65

49. Open intervals of wells nearly on strike with the pumped well, static depth to water, and drawdown at end of pumping at the John Evans site in Lansdale, November 21, 1997. 65

50-51. Graphs showing:

50. Measured water levels at the John Evans site in Lansdale, November 20-22, 1997. 66

51. Measured and simulated drawdown, using two-aquifer model of Neuman and Witherspoon, in wells Mg-67, Mg-80, Mg-163 and Mg-1666 at the John Evans site in Lansdale, November 21, 1997. 67

52. Map showing boundaries and stream cells of model grid and selected areas of soil contamination in and near Lansdale. 70

53. Schematic cross-section of model structure showing thickness of three layers and location of pumping or observation well in middle layer for simulation of ground-water flow in and near Lansdale. 71

54-58. Graphs showing:

54. Simulated hydraulic head in model layer 2 representing the upper 328 feet of unweathered, fractured bedrock in and near Lansdale, and model head residual. 76

55. Simulated hydraulic head in model layer 2 representing the upper 328 feet of unweathered, fractured bedrock in and near Lansdale, and stream capture zones for “No Pumping” scenario. 80

56. Simulated stream and well capture zones and flowpaths from potential source areas in Lansdale and vicinity for “1994” scenario. 82

57. Simulated stream and well capture zones and flowpaths from potential source areas in Lansdale and vicinity for 1994 scenario with modified anisotropy ratio (from 0.09 to 0.119) and layer 1 hydraulic conductivity [0.16 to 1.97 feet/day (0.049 to 0.6 meters/day)]. 83

58. Simulated stream and well captures zones from potential source areas in Lansdale and vicinity for “1997” scenario. 84
TABLES

Table	Page
1. Depth distribution of water-bearing zones determined from geophysical logging of 31 wells in and near Lansdale, Pa. | 15
2. Well depth, casing length, depth to water, and change in water levels from January 1996 to January 1997, and from January 1997 to January 1998 for selected wells in and near Lansdale | 18
3. Depth and direction of vertical flow and inferred depths of fractures with inflow and outflow in wells logged under nonpumping conditions in and near Lansdale | 26
4. Streamflow measured at five sites in and near Lansdale, May 1995 to November 1996 | 30
5. Streamflow at selected sites in and near Lansdale under base-flow conditions, May 8-9, 1995, and during stormflow recession, May 10, 1995 | 32
6. Summary of chemical properties or constituents measured in the field for water samples from selected wells in and near Lansdale, fall 1997 | 33
8. Depths, water levels, specific capacity, and transmissivity of aquifer intervals isolated by packers and of the open hole for well Mg-1443 in Lansdale, April 1997, May 1996, and October 1997 | 44
9. Depths, water levels, specific capacity, and transmissivity of aquifer intervals isolated by packers and of the open hole for well Mg-1444 in Lansdale, April 1997 and October 1997 | 49
10. Summary of aquifer-isolation tests of wells Mg-624 and Mg-1639, Lansdale, August and September 1997 | 50
11. Physical properties and concentrations of selected volatile organic compounds in samples collected from isolated intervals at the end of pumping in wells Mg-80, Mg-1443, and Mg-1444 in Lansdale, March 26 - April 11, 1997, and in wells Mg-624 and Mg-1639, August 28 - September 2, 1997 | 52
12. Well characteristics and locations and pumping data for aquifer tests done in Lansdale, November 1997 | 54
13. Summary of estimated hydraulic properties determined from analyses of multiple-well aquifer tests in Lansdale | 59
14. Field measurements of physical and chemical properties and concentrations of selected volatile organic compounds in water samples collected during aquifer tests of wells Mg-1600, Mg-1610, and Mg-1609 in Lansdale, November 13-21, 1997 | 69
16. Hydraulic conductivity, anisotropic ratios of hydraulic conductivity, recharge rates, and calibration errors for calibrated cases of different model structures used for simulation of ground-water flow in and near Lansdale | 74
17. Measured and simulated streamflow for calibrated numerical model of ground-water flow in and near Lansdale | 77
18. Optimum and approximate, individual, 95-percent confidence-interval values for hydraulic conductivity, anisotropic ratio, and recharge for calibrated simulation of ground-water flow in and near Lansdale | 78
TABLES—Continued

Table 19. Selected sites and main volatile organic compounds where soil contamination or probable sources of ground-water contamination have been identified in Lansdale. 80

20. Simulated ground-water discharges to wells and the Towamencin, W. Branch Neshaminy, and Wissahickon Creek stream segments in and near Lansdale under no-pumping, 1994, and 1997 conditions. 81

22. Description of wells and measured water levels in and near Lansdale. 91

23. Physical and chemical constituents measured in the field for water samples from wells in and near Lansdale. 110

CONVERSION FACTORS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inch (in.)</td>
<td>25.4</td>
<td>millimeter</td>
</tr>
<tr>
<td>foot (ft)</td>
<td>0.3048</td>
<td>meter</td>
</tr>
<tr>
<td>mile (mi)</td>
<td>1.609</td>
<td>kilometer</td>
</tr>
</tbody>
</table>

Area		
acre	0.4047	hectare
square mile (mi²)	2.590	square kilometer

| **Mass** | | |
| pound, avoirdupois (lb) | 0.4536 | kilogram |

| **Temperature** | | |
| degree Fahrenheit (°F) | °C = 5/9 × (°F − 32) | degree Celsius |

Other Abbreviations	
µg/L micrograms per liter	
mg/L milligrams per liter	

Sea level: In this report, “sea level” refers to the National Geodetic Vertical Datum of 1929—a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.
GROUND-WATER SYSTEM, ESTIMATION OF AQUIFER HYDRAULIC PROPERTIES, AND EFFECTS OF PUMPING ON GROUND-WATER FLOW IN TRIASSIC SEDIMENTARY ROCKS IN AND NEAR LANSDALE, PENNSYLVANIA

by Lisa A. Senior and Daniel J. Goode

ABSTRACT

Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency’s (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.

Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge areas in three drainages, the Wissahickon, Towamencin, and Neshaminy Creeks.

Ground-water flow was simulated for different pumping patterns representing past and current conditions. The three-dimensional numerical flow model (MODFLOW) was automatically calibrated by use of a parameter estimation program (MODFLOWP). Steady-state conditions were assumed for the calibration period of 1996. Model calibration indicates that estimated recharge is 8.2 inches (208 millimeters) and the regional anisotropy ratio for the sedimentary-rock aquifer is about 11 to 1, with permeability greatest along strike. The regional anisotropy is caused by up- and down-dip termination of high-permeability bed-oriented features, which were not explicitly simulated in the regional-scale model. The calibrated flow model was used to compare flow directions and capture zones in Lansdale for conditions corresponding to relatively high pumping rates in 1994 and to lower pumping rates in 1997. Comparison of the 1994 and 1997 simulations indicates that wells pumped at the lower 1997 rates captured less ground water from known sites of contamination than wells pumped at the 1994 rates. Ground-water flow rates away from Lansdale increased as pumpage decreased in 1997.

A preliminary evaluation of the relation between ground-water chemistry and conditions favorable for the degradation of chlorinated solvents was based on measurements of dissolved-oxygen concentration and other chemical constituents in water samples from 92 wells. About 18 percent of the samples contained less than or equal to 5 milligrams per liter dissolved oxygen, a concentration that indicates reducing conditions favorable for degradation of chlorinated solvents.
SUMMARY AND CONCLUSIONS

Ground water in the area of Lansdale, Pa., is used for drinking water and for industrial and commercial supply, and is known to be contaminated with volatile organic compounds that were used at several industrial facilities. An area in Lansdale and vicinity was placed on the National Priority List by the USEPA and is designated the North Penn Area 6 site. The USGS provided technical assistance to USEPA through this study to describe the ground-water flow system and evaluate the effects of changes in the well pumpage on ground-water flow directions as wells shut down in Lansdale during the 1990’s. The USGS collected hydrologic data from 1995 to 1998 to characterize the ground-water flow system. These data included water-level and streamflow measurements, geophysical logs, selected chemical measurements of ground-water samples, and water-level response to pumping during aquifer tests. Using these data, a conceptual model of the ground-water system was developed and ground-water flow under various pumping scenarios was simulated.

The Lansdale area is underlain by Triassic-age fractured shales, siltstones, and sandstones of the Brunswick Group and Lockatong Formation. These rocks generally strike northeast and dip at angles less than 30 degrees to the northwest, as indicated by correlation of natural-gamma logs and in agreement with reported attitudes in literature. The Borough of Lansdale is on an upland area that forms a divide between three streams—Towamencin Creek to the southwest, Wissahickon Creek to the southeast, and Neshaminy Creek to the north. The bedrock aquifer is recharged by precipitation. Except perhaps at very shallow depths [less than 50 ft (15 m)], most of the aquifer is under confined or semi-confined conditions.

Water levels were measured near-continuously at seven wells from fall 1995 to spring 1998. Water levels were observed to respond to earth tides and changes in barometric pressure. Water levels generally declined in 1995 and 1997, years with less-than-normal precipitation, and rose in 1996, a year with greater-than-normal precipitation. Water levels in 100- to 500-ft (30.5- to 152-m) deep wells distributed throughout the area were measured in August 22-23, 1996, and January 12-13, 1998, to estimate the potentiometric surface of the bedrock aquifer in the region. The potentiometric surface estimated from these levels reflects land-surface topography, although the ground-water divide lies north of the topographic divide in the Borough of Lansdale.

Streamflow was measured periodically at five sites during 1995-96 to provide an estimate of annual base flow. The amount of annual recharge that discharged to streams averaged about 3.2 in. (81 mm) over a 10-mi² (25.9-km²) area of Lansdale in 1996. Streamflow measurements at about 20 sites in May 1995 indicated the upper reaches of Wissahickon Creek and a tributary to West Branch Neshaminy Creek were dry, discharge from the Lansdale sewage treatment plant contributed most of the flow in another tributary to West Branch Neshaminy Creek, and Towamencin Creek has a higher base flow relative to the surface-drainage area than the other streams.

Geophysical logs were run in 31 observation, industrial, water supply, and commercial wells and 27 monitor wells newly drilled in 1997 to determine distribution of water-bearing zones, directions of borehole flow, attitude of beds from stratigraphic correlation of natural-gamma logs, and attitude of water-bearing fractures. Wells ranged in depth from 49 to 1,027 ft (14.9 to 313 m). Water-bearing zones were most frequently detected in the interval from 50 to 300 ft (15 to 91.4 m) below land surface. Upward flow under nonpumping conditions was measured in 35 of 58 wells. Downward flow was measured in 11 wells and inferred in 1 well, and many of these were near pumping wells. Upward and downward flow was measured in three wells. No flow was detected in eight wells. Many water-bearing fractures were oriented in attitudes similar to that of bedding, which generally strikes to the northeast and dips to the northwest in the area.

Single-well, aquifer-interval-isolation tests (packer tests) were done by USGS at three wells in spring 1997 in Lansdale. The aquifer-interval-isolation tests indicate discrete water-bearing openings generally are not well connected in the vertical direction. Evidence for limited vertical hydraulic connection between water-bearing openings includes differences in static potentiometric head up to 15 ft (46 m) over 300 vertical ft (91 m) and typically small drawdown in zones adjacent to the isolated pumped zone. Estimated values for transmissivity (T) ranged from 0.54 to 240 ft²/d (0.05 to 22 m²/d) for tests of isolated intervals and ranged up to two orders of magnitude within a single well. No relation between depth and specific capacity or estimated transmissivity was noted in the results of tests of isolated zones in the three wells. The chemical composition of water from isolated intervals generally differed at least slightly. In tests of two of three wells, concentrations of manmade VOC’s were highest in the shallowest zones tested.
Multiple-well aquifer tests were done at three sites in fall 1997. Effects of heterogeneity and limited vertical permeability were observed in all tests. The variability of the extent of response to pumping at all three sites underscores the heterogeneity of three-dimensional hydraulic conductivity in the fractured-rock formations. Estimated values of transmissivity determined from analyses of multiple-well tests, assuming isotropic radial flow, ranged from 210 to 2,300 ft²/d (20 to 210 m²/d). For analyses considering anisotropic response, a 20-fold difference was determined in directional transmissivity. The maximum transmissivity was 10,700 ft²/d (990 m²/d) in the dip direction and the minimum transmissivity was 520 ft²/d (48 m²/d) in the strike direction. Preferred horizontal flow in the strike direction was not observed for these tests because analyses were limited to wells open to pumped intervals, as projected along bedding. These results are consistent with a multiple-aquifer conceptual model of the groundwater system in which flow is primarily in zones oriented parallel to the dipping bedding.

Ground-water flow under steady-state conditions was simulated by use of a numerical model (MODFLOW). The model was oriented parallel to regional strike and consisted of three layers to represent saprolite and weathered rock near the surface and intermediate and deep zones of unweathered rock. The hydraulic properties of the model were subdivided laterally on the basis of geologic mapping of the Lockatong Formation and Brunswick Group. The model was calibrated against measured water levels (1996) and base flow estimated from seasonal measurements (1995-96) by use of a parameter-estimation program (MODFLOWP). Calibration yielded a regional anisotropy ratio of 11 to 1; preferred permeability was in the strike direction. Calibrated values were 8.3 in. (212 mm) for recharge, 5.35, 1.12, and 0.16 ft/d (1.63, 0.34, and 0.049 m/d) for the maximum hydraulic conductivity of the Brunswick Group, Lockatong Formation, and weathered layer, respectively. Discharge was much greater to the Towamencin Creek than to the West Branch Neshaminy and Wissahickon Creeks.

The calibrated ground-water flow model was used to simulate ground-water flow during periods of relatively high pumpage (1994) and relatively low pumpage (1997). Ground-water flowpaths originating from recharge near known areas of soil contamination were simulated. Pumping public-supply well Mg-67 (NPWA well L-8) and industrial wells Mg-153, Mg-620, Mg-621, and Mg-1045 captured ground water from several of these sources in the 1994 scenario. Because pumping at these wells ceased by 1997, ground water from those sources were no longer captured at those wells. Greater amounts of contaminated ground water moved away from Lansdale to surrounding areas under pumping conditions in 1997 than in 1994. Relatively small changes in the uncertain hydraulic properties of the model will result in changes in the simulated discharge paths of ground water from source areas.
REFERENCES CITED

REFERENCES CITED—Continued

REFERENCES CITED—Continued

